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Lattice QCD
• Lattice Quantum Chromodynamics (QCD) is a numerical 

framework to simulate the strong interactions between quarks 
and gluons. 

• continuous 4D space-time => 4D lattice after discretization

• Physical observables calculated from lattice QCD provide 
important insights to the QCD theory through comparisons 
with experimental results, e.g. 
– Internal structures of protons, pions, etc.
– Bounds for new physics 

• Key Algorithm Motifs 
– Markov Chain Monte Carlo 
– Sparse matrix inversions

quarks'

gluons'

Illustration of a 3D lattice

Visualization of QCD topological 
charge density. M. McGuigan (BNL)
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Computational Kernel
• The core computational kernel of lattice QCD is matrix vector multiplications – the so-

called Dslash operator. 
𝑫𝜶𝜷
𝒊𝒋 𝒙, 𝒚 𝝍𝜷

𝒋 𝒚 = ∑𝝁&𝟏𝟒 [(𝟏 − 𝜸𝝁)𝜶𝜷𝑼𝝁𝒊𝒋 𝒙 𝜹𝒙*+𝝁,- + (𝟏 + 𝜸𝝁)𝜶𝜷𝑼𝝁*
𝒊𝒋 𝒙 + 1𝝁 𝜹𝒙.+𝝁,-] 𝝍𝜷

𝒋 𝒚

– 𝒙, 𝑦: 4D coordinates
– 𝜸𝝁: 4✕4 matrices (fixed) 

– 𝑼𝝁 𝑥 : complex 3✕3 matrices, 4 per lattice site (main memory usage)

– 𝝍 𝒚 : complex 12-component vectors, 1 per site (main memory usage)

• Matrix-vector multiplication form is known analytically. No actual matrices are stored. 

• Memory requirements per site: 9×2×4 + 12×2 ×8 = 768 bytes (DP)

• Floating point operations for Wilson Dslash: 1320 flops per site

• Low arithmetic intensity: 1.7 flops/byte (DP) or 3.4 flops/byte (SP)
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The Grid C++ QCD Library

Data Layout for Lattice QCD
• Canonically use volume-size Arrays of Structs (site-local objects) 

• psi[t][z][y][x][Ns][Nc][2]
• Site-local operations highly nonlinear
• Not SIMD friendly

• Could also rearrange the indices: make one of the lattice dimensions inner index
• psi[t][z][y][Ns][Nc][2][x]
• Could potentially vectorize over x
• Choice of Lx becomes inflexible (has to be multiples of the SIMD length)

• Further decompose the lattice into sub-lattices (virtual nodes) [P. Boyle, 1512.03487]
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SIMD lanes

Mapping SIMD Data Layout Onto GPUs

• Same SIMD layout can also work on GPUs
• Map SIMD lanes onto GPU threads, and “virtual nodes” onto thread blocks
• Basically treat GPUs as very wide SIMD machines

GPU threads

A thread block
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• Grid[1] is a C++ library for lattice QCD

• Initially designed for SIMD architectures with long 
SIMD length (Intel Knights Landing, Skylake, etc.). 

• Arranges the data layout as if the lattice is divided into 
virtual “sub-lattices”.

• Each sub-lattice uses one SIMD lane. 

• Same data layout can be mapped to GPU architectures

• C++11 (lambda, auto types, etc.) 

• Extensive use of templates for high-level abstraction

• Custom expression template engine for performance

Data mapping on SIMD architecture

Data mapping on SIMT architecture

[1] P. Boyle et al., arXiv:1512.0348, https://github.com/paboyle/Grid
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Grid’s Performance Portable Design
• Header file with macros to encapsulate architecture-dependent implementations

• Custom AlignedAlloctor for dynamic memory allocation on different architecture

#ifdef GRID_NVCC
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
#define accelerator_for (…) { //CUDA kernel}

#else
#define strong_inline __attribute__((always_inline)) inline
#define accelerator
#define accelerator_inline strong_inline
#define accelerator_for(…)  thread_for(…) //for loop with #pragma omp parallel for

#ifdef GRID_NVCC
if ( ptr == (_Tp *) NULL ) auto err = cudaMallocManaged((void **)&ptr,bytes);

#else 
#ifdef HAVE_MM_MALLOC_H

if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
#else

…
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Grid Structure

Core Software
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GridMini
• A substantially reduced version of Grid 

for experimentation with different 
programming models. 

• Retains same Grid structure: data 
structures/types, data layout, aligned 
allocators, macros, …

• Only keeps the high-level components 
necessary for the benchmarks.

• SU(3)✕SU(3) benchmark: STREAM-
like memory bandwidth test

• Important as LQCD is bandwidth bound. 

Benchmark_su3

LatticeColourMatrix z(&Grid); //Arrays of SU(3)
LatticeColourMatrix x(&Grid); //Arrays of SU(3)
LatticeColourMatrix y(&Grid); //Arrays of SU(3)

double start=usecond();
for(int64_t i=0;i<Nloop;i++){

z=x*y;
}
double stop=usecond();
double time=(stop-start)/Nloop*1000.0;

double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
double bandwidth=bytes/time; //GB/s
double Gflops=flops/time;    //0.9 flops/byte SP
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• In the CUDA implementation, Grid’s SIMD data layout 
can be used to force data coalescencing. 

• Same data layout across SIMD and SIMT archs. 

Previous Work
• Previously[2] explored porting Grid to GPUs using 

OpenACC, JIT and CUDA. 

• Use coalesced_ptr[3]to force data coalescencing
to get best performance. 

[2] Boyle, Peter A., et al. "Performance portability strategies for grid C++ expression templates." EPJ Web of 
Conferences. Vol. 175. EDP Sciences, 2018. [3] https://github.com/maddyscientist/coalesced_ptr
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OpenMP Offloading
• To add OpenMP offloading (to NVIDIA GPUs) for Benchmark_su3, only two 

changes required. 

• New macros

• Use cudaMallocManaged for the memory allocator (for now)

#elif defined (OMPTARGET)
#define accelerator_inline strong_inline
#define accelerator_for(iterator,num,nsimd, ... )  \
{                                                  \

_Pragma("omp target teams distribute parallel for”) \
naked_for(iterator, num, { __VA_ARGS__ }); \

}

#if definded (GRID_NVCC) || defined (OMPTARGET_MANAGED)
if ( ptr == (_Tp *) NULL ) auto err = cudaMallocManaged((void 

**)&ptr,bytes);
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Issues
• Deep copy: explicit data mapping nontrivial due to deep nested data structures
– Managed/Unified memory greatly simplifies things 

• Incorrect results: output always 0 after offloading
– Compiler bug related to the use of struct of short vectors as device function return type. 

– Fixed as of llvm/12.0.0-git_20200731

struct vec {
float v[2];

};

inline vec mult(vec x, vec y){
vec out;
out.v[0]=x.v[0]*y.v[0];
out.v[1]=x.v[1]*y.v[1];
return out; //causing issue here

}

vec in1,in2;
vec out[N];
#pragma omp target teams distribute parallel for 
map(to:in1,in2) map(from:out[0:N])
for(int n=0;n<N;n++) {

out[n]=mult(in1,in2);         
}

Got: 0.000000 0.000000
Expected: 2.000000 2.000000
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Compiling and Performance
• Compiling with clang++ (Original)

• Performance of Benchmark_su3 maxed out at 125 GB/s on NVIDIA V100 (Cori-GPU)
– Peak memory bandwidth should be 900 GB/s

• Learned about -fopenmp-cuda-mode at the SOLLVE OpenMP Hackathon*. 

– Guarantees to the compiler that the target region is in SPMD mode
– Performance improved significantly (5X)!

*Special thanks: Rahul Gayatri (LBNL), Johannes Doerfert (ANL) 

CXX=clang++
CXXFLAGS=-std=c++14 -g -fopenmp -O3 -fopenmp-targets=nvptx64-nvidia-cuda \

-lcudart

CXX=clang++
CXXFLAGS=-std=c++14 -g -fopenmp -O3 -fopenmp-targets=nvptx64-nvidia-cuda \

-lcudart –fopenmp-cuda-mode
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SU(3)xSU(3) Performance Comparison

● With -fopenmp-cuda-mode

● thread_limit(8) seems to be 
slightly better than 32 or 
128. 

● CUDA bandwidth plateaus 
much earlier: why? 

● With large data, OpenMP 
version is about 90% of 
CUDA performance.

● With small data sizes, 
OpenMP performs much 
worse: OpenMP version has 
more overhead? 

*benchmark performed on Cori GPU (V100); 
llvm/12.0.0_git_20200731; cuda/10.1.243
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Profiling

Culprit for poor performance at 
small memory footprints:
30% time spent on 
cuMemAlloc/cuMemFree

OpenMP

● A known issue of LLVM when many short lived 
objects with non-overlapping lifetimes are 
mapped. 

● Solution: Keep and reuse previously freed 
memory instead of giving and to CUDA and 
asking for it again. 
See https://reviews.llvm.org/D81054

● Pool allocation is next to reduce the cost for 
many consecutive small allocations with 
overlapping lifetimes. 

See  https://reviews.llvm.org/D85274

https://reviews.llvm.org/D81054
https://reviews.llvm.org/D85274
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Patched 

*benchmark performed on Cori GPU (V100); patched version 
uses llvm/12.0.0_git_20200731-shilei; cuda/10.1.243

● A patch exists to optimize the 
memory management in LLVM. 

● The patch improves the 
performance significantly, in 
particular with small- to medium-
sized data footprints.  

● The performance is on par with 
the CUDA version for the most 
part. 

● The patch has been merged 
into the LLVM mainline. 
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Progression of Performance (LLVM12) 

● Original gets best performance 
with 128 threads (also compiler 
default). 

● 8 threads per block seems to be 
the sweet spot with -fopenmp-
cuda-mode, both patched and 
unpatched. 

● Setting num_teams together with 
thread_limit doesn’t seem to 
have much effect, since compiler 
generates num_teams based on 
# of threads and the loop count, 
same as the manual num_teams.   

*benchmark performed on Cori GPU (V100); patched version 
uses llvm/12.0.0_git_20200731-shilei; others use 
llvm/12.0.0_git_20200731; cuda/10.1.243
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Summary and Next Steps
• OpenMP offloading to GPUs seems feasible in GridMini.

• LLVM compiler support for omp target has improved a lot!

• Communication with the compiler team is very important. 
– Benefits go both ways.

• Next Steps:
– Make the code truly portable: replace cudaMallocManaged with either explicit target data 

clauses or OpenMP’s unified_shared_memory clause (when supported). 
– Investigate the effects of SIMD vs Scalar (SIMD length=1) data layout

• right now using Scalar data layout. 

– Move on to the Dslash benchmark: this is our true interest. 
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